Impacts of Added Fat Distillers Grains vs. EnerGII

Impacts of dietary fat level and saturation when feeding distillers grains to high producing dairy cows.

Authors:

J. M. Havlin¹, P. H. Robinson¹, and K. Karges²

1 Department of Animal Science, University of California, Davis, CA, USA, and 2 POET Nutrition, Inc., Sioux Falls, SD, USA

Journal of Animal Physiology and Animal Nutrition <u>http://onlinelibrary.wiley.com/doi/10.1111/jpn.12219/abstract</u>

Research Update by

Distillers Grains vs. EnerGII THE OBJECTIVE

This experiment was conducted to determine whether increasing the net energy (NEL) of a total mixed ration (TMR) with mainly unprotected, unsaturated fat from corn distillers dried grains with solubles (DDGS) vs. rumen inert (RI) fat has similar impacts on animal performance.

*J. M. Havlin, P.H. Robinson, et. al., University of California-Davis

Research Update by

Distillers Grains vs. EnerGII STUDY DESIGN

- N= 1140 lactating cows
- 3 treatments with 380 early lactation, multiparous cows/treatment
- Incomplete Youden Square Design
 - Four 28-day periods & followed cows through entire lactation
 - Total experiment = 16 weeks
- Dakota Gold was used as the high protein/low fat distillers source.
- Average intake of EnerGII was .8 lb/d (same as average intake of fatty acids from typical distillers treatment).
- Typical distillers = 12% fat; Low fat (high protein) distillers = 5% fat

Research Update by

Distillers Grains vs. EnerGII THE TREATMENTS

Research Update by

Distillers Grains vs. EnerGII THE RESULTS

- Milk Production
- ✓ Milk Fat Test
- ✓ Fat Corrected Milk
- ✓ Dry Matter Intake

- Body Condition Score
- ✓ Feed Efficiency
- ✓ Fatty Acid
 Digestibility
- ✓ Income Over Feed Cost

Research Update by

Distillers Grains vs. EnerGII THE RESULTS: Milk/Cow

Research Update by

Makers of

NUTRITION[™]

Distillers Grains vs. EnerGII THE RESULTS: Milkfat %

Research Update by

Distillers Grains vs. EnerGII THE RESULTS: 3.5% FCM

Research Update by

Makers of

NUTRITION™

Distillers Grains vs. EnerGII THE RESULTS: Dry Matter Intake

Research Update by

Distillers Grains vs. EnerGII THE RESULTS: Feed Efficiency

Research Update by

Distillers Grains vs. EnerGII THE RESULTS: Income Over Feed Cost

*Assumptions: \$18.00/cwt milk price and \$0.15 per lb. feed cost across treatments, plus +\$.10 additional cost/cow for typical distillers vs. control and +\$.40/cow for EnergII treatment vs. control.

Research Update by

Makers of

NUTRITION

Distillers Grains vs. EnerGII THE RESULTS: Body Condition Score Gain over 16 Weeks

Research Update by

Distillers Grains vs. EnerGII THE RESULTS: Fatty Acid Digestion

Research Update by

EnerGII vs. Low Fat Control BENEFITS SUMMARY

Research Update by

EnerGII vs. High Fat Distillers BENEFITS SUMMARY

Research Update by

Distillers Grains vs. EnerGII THE RESULTS: Partial Budget Analysis

	EnerGII vs. Control	EnerGII vs. Typical DDGS
REVENUE		
Fat Corrected Milk (lbs.)	6.2	8.1
Milk Price	\$18.00	\$18.00
Milk Revenue	\$1.12	1.46
COST		
Incremental Ration Cost	\$0.40	\$0.30
Change in DMI (lb.)	0.4	-4.5
Ration Cost/lb. DM	\$0.15	\$0.15
Incremental DMI Cost	\$0.06	\$(0.68)
Total Cost:	\$0.46	\$(0.38)
PROFIT		
Total Profit/cow/day:	\$.66	\$1.83

Assumptions: Typical DDGS @ \$250/ton; Low Fat DDGS @ \$250/ton, EnerGII @\$1000/ton, Ration Cost: \$0.15/lb., Milk Price: \$18/cwt.

Distillers Grains vs. EnerGII POINTS TO REMEMBER

- The diet with **EnerGII & Low Fat Distillers saw the greatest milk production, milk fat %, and fat corrected milk**, all on similar intakes relative to the control with just low fat distillers.
- These gains in production efficiency were due primarily to the **greater** fatty acid digestibility in the EnerGII diet.
- While the typical DDGS vs. EnerGII + Low Fat DDG treatments were equal in total fatty acids, the EnerGII diet yielded 8.1 pounds more fat corrected milk and \$1.83 cents greater income over feed cost.
- While typical DDGS may seem like an 'inexpensive' ingredient at times, there are **tremendous costs to production efficiency vs. EnerGII**.

Research Update by

